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Abstract
The temporal motion of observables of a quantum mechanical N-level system
is studied. In particular, I investigate the mapping, in its dependence on the
matrix V parametrizing the Lindblad generator, of given initial configurations
into the resulting configurations at large times t (t → ∞). Explicit solutions
are given for a large class of V .

PACS numbers: 03.65.Yz, 03.65.Sq, 03.65.Fd, 05.30.−d

1. Introduction

The description of a physical system requires an operational definition of its state and of the
state changes produced by external manipulations. Very general settings for state changes
in quantum systems have been discussed by Haag and Kastler [1] in the framework of
algebraic quantum theory. In the common formulation of quantum theory in Hilbert space,
two scenarios are of particular importance. States described as density operators change,
in the first scenario, when the system under consideration, in the state �, interacts with a
second system (‘apparatus’), in the state �′; a measurement of a property a′ of the apparatus
corresponding to a projection operator Pa′ leaves the system in the state [2–4]

�̃ = (I ⊗ Pa′)U+(� ⊗ �′)U(I ⊗ Pa′) (1.1)

where U stands for the unitary motion of the total system.
The map

T : � �→ �̃ = T (�)

is shown [5] to be of the form

�̃ =
∑
i∈J

Qi�Q+
i (1.2)

where J is some index set and∑
i∈J

Q+
i Qi � I. (1.3)
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Furthermore, it can be readily seen [5] that its adjoint map T + which describes the state change
in the Heisenberg picture

T + : B̃ =
∑
i∈J

Q+
i BQi B, B̃ ∈ B(H) norm-bounded observables on H (1.4)

is a completely positive map. The Stinespring theorem [6] then leads [2] to the lemma that a
map B(H) → B(H) is completely positive if it can be written as (1.4).

The second scenario encompasses situations in which the systems under consideration
are in ‘contact’ with a bath. The map

T̂ : B(H) �→ B(H)

B �→ B̃ (1.5)

B̃ = Trbath(�bathU
+(B ⊗ I)U)

is now obtained by averaging over the bath variables; the map T̂ is, obviously, again completely
positive.

The most general basis for the formulation of equations describing the time evolution
of the system observables (or states) is doubtlessly the ab initio approach which starts from
the unitary motion of the combined system plus bath variables. A remarkable broad corpus
of models has been developed [7, 8] which in a general sense sets the scope within which
the motion of system observables or states is effected by a semigroup of completely positive
maps, the most important issues being the existence of Markovian equations of motion and
the quantification of time scales comparing particular scales for the motion of the embedded
quantum system and the relaxation times in the bath [9–12].

Complete positivity and the semigroup structure then lead to the celebrated Lindblad
equations [13]. Needless to say but important to keep in mind that the derivation of the latter
follows an axiomatic line and there is no a priori answer to the question whether or not and,
if yes, under which circumstances these equations describe the dynamics of open systems.
One of the pungent questions is how the operators Vi parametrizing the generator of temporal
motions are to be chosen to describe a specific experimental situation. More precisely, we
have

Ḃ = i[H,B] +
∑
i∈J

V +
i BVi − 1

2
[V +

i Vi, B]+

Vi,
∑
i∈J

V +
i Vi ∈ B(H) norm-bounded operators on H (1.6)

(in the following we shall work in the Heisenberg picture),where J is an (eventually continuous)
index set.

In principle, the Vi should be determined from the dynamics imposed by the experimental
set-up—a formidable task indeed. A more down-to-earth approach certainly is to try to model
whatever process is under consideration by making physically plausible ansätze for these
operators V.

In this paper, we pose a more modest question: can we classify asymptotic (as time goes
to infinity) configurations of observables B according to specific properties—symmetries—of
Lindblad operators Vi? We pursue, to begin with, this question in the special situation in
which only one Vi prevails. Situations which require more than one operator can be treated
after a rather general answer is found for the case of one operator.
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2. Lindblad damping in N-level systems with privileged V

We choose to work in the Heisenberg picture and discuss the asymptotic behaviour for t → ∞
of solutions of the Lindblad equation

(
Ȧ = d

dt
A

)
:

Ȧ = i[H,A] + V +AV − 1
2 [V +V,A]+ (2.1)

where H denotes the Hamiltionian of the system, A an observable and [H,A] =
HA − AH, [· · ·]+ the commutator and anticommutator respectively; H and A are Hermitian,
V are arbitrary N ×N complex matrices of rank N representing linear operators on H (or CN).
We assume rank (H,A, . . .) = N . To study pure Lindblad damping, we put in this section
H = 0. The equation of motion then reads

Ḃ = V +BV − 1
2 [V +V,B]+

(2.1′)
B = H,A, . . . .

The problem we now pose is to explore the dependence on the Lindblad matrix V of
asymptotic configurations (t → ∞) of observables B, an initial configuration given at, say,
t = 0. By ‘configuration’ we mean a specific matrix obtained from the equation of motion at
a specific time t1: the cross section of the flow obtained from (2.1′) at t = t1.

Seen more formally, we intend to examine general properties of the mapping

τ (V ) : C
N 2 → C

N 2

(2.2)
B|t=0 �→ Bt=∞

for solutions B of (2.1′). In particular, we try to find classes of V, as far as possible to emphasize
their relevance, leading to typical asymptotic behaviour.

To approach this problem, we use a more hermeneutic method of solution: we
impose general properties of Lindblad matrices V with increasing complexity and derive
the corresponding asymptotic configurations for general initial conditions.

2.1. General Lindblad matrices

The simplest case to be considered is as follows:

(i) V is Hermitian,

[B,V ] = 0 for all t

which is consistent but trivial since then

Ḃ = 0

and B remains in its initial state: τ (V ) = id. Thus we consider

[B,V ] �= 0

except, possibly, at some discrete values of t > 0.
Assuming Hermiticity of V means that we may choose a basis in H in which V is diagonal

Vdiag =




ν1 0
. . .

0 νN


 νi ∈ R, i = 1, . . . , N.

Denote

B = (bij (t))
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(2.1′) now reads

ḃik(t) = νiνkbik(t) − 1
2

(
ν2

i + ν2
k

)
bik(t)

and has the solution

bik(t) = bik(0) e− 1
2 (νi−νk)

2t . (2.3)

The map τ (V )) is now easily discussed: in the case of no degeneracy, i.e. all νi are
different, τ (V ) maps all initial configurations on their diagonal part,

τ (V ) : (bik(0)) �−→




b11(0) 0
. . .

0 bNN(0)


 . (2.4)

In the case of degeneracies, the corresponding off-diagonal elements remain.
A general Hermitian V can be written as

V = UVdiagU
−1 (2.5)

where U is unitary. We immediately see that now

τ (V ) : U−1B|t=0U �−→ U−1Bt=∞U |‘diagonal’ (2.6)

‘diagonal’ includes the possibility of degeneracies in V. This relation specifies the map
τ (V ) for all Hermitian V for any given initial configuration.

We now turn to the second part of the alternative.
(ii) V is non-Hermitian. Needless to say that this notion is a bit cursory or even superficial

since after all ‘almost all’ matrices in CN 2
are non-Hermitian. As already indicated, our

strategy will be to discuss certain classes of matrices with well-defined general properties
and study the repercussions of these properties on the asymptotic solutions of (2.1′).

At the centre of these constructions is the immediate observation that V +V is Hermitian
and positive (we demanded maximal rank for V ) so that a basis in H can be chosen such
that V +V is diagonal with positive entries. We take V +V as the starting point of our
construction. The problem of determining V is then similar to constructing ‘square roots’
of diagonal matrices, a problem for which the positivity of V +V is of prime importance.

We then note that V +V is positive and diagonal iff V is built up by N linearly independent
and, moreover, orthogonal column vectors �νi i = 1, . . . , N with components

�νi = (νki)νki ∈ C i, k = 1, . . . , N

and

�ν+
i �νk = |�νi|2δik. (2.7)

2.2. A general solution for symmetry inducing Lindblad matrices V

We start by choosing a basis in which V +V is diagonal

V +V =




w1 0
. . .

0 wN


wi > 0 i = 1, . . . , N

and construct a matrix V — a set of orthogonal vectors �vi— which reflects a situation in which
relevant symmetry leads to characteristic asymptotic behaviour of observables. Considerable
simplification occurs if we demand that these vectors coincide with the coordinate axis chosen
for representing V +V .
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We put

νki = νiδkf L(i) νi ∈ C i = 1, . . . , N

wi = |�νi |2 (2.8)

where fL is an arbitrary permutation, a bijective map of a set of N integers, say [1, . . . , N],

fL : [1, . . . , N] → [1, . . . , N]

which fixes the sequence of identification of the �νi with the axis of the basis. The maps

fL : i �−→ fL(i) = (i + L) mod N + 1 (2.9)

reveal the important points. To mention it more precisely the cyclic permutations of (L + 1)-
plets realized by fL should serve as a paradigmatic example which illustrates the essential
cyclic structure.

In the following, we have to go into some details and write down the permutation
machinery which is important for us.

We have (f κ
L denotes fL ◦ fL ◦ · · · ◦ fL, κ times)

f0[1, . . . , N] = [2, . . . , N, 1] f N
0 = id

f1[1, . . . , N] = [3, 4, . . . , N, 1, 2] f
N/2

1 = id N/2—integer
...

fL[1, . . . , N] = [L + 1, . . . , N, 1, . . . , L] f
N/(L+1)

L = id N/(L + 1)—integer
...

fN−1 = id

if N is a prime number

f N
L = id for all L � 0.

Hence, if N/(L + 1) is integer the ordered set [1, . . . , N] is decomposed into (L + 1)

adjacent sets which are cyclically permuted by fL so that we obtain N/(L + 1) permutations
of the original set [1, . . . , N]. We then arrange consecutively the first elements of these
permutations into a set of length N/(L + 1), the second elements into a second and so on until
we reach the (L + 1)th element to get a (L + 1)th set. In this way we constructed L + 1 sets of
indices

[
iα1 , . . . , iαK

]
,

(L + 1) R-cyles of length K = N/(L + 1). (2.10)

The subspace spanned by the unit vectors
[�να1 , . . . , �ναN

]
defined in (2.8) is obviously invariant

under these cyclic permutations. The point we will prove is that asymptotic configurations are
given as a direct sum of scalar multiples of the unit matrices in these invariant subspaces. By
construction fL induces cyclic permutations of these R-cycles.

Inserting (2.8) in (2.1′) we obtain the equations of motion

ḃli = ν∗
l νibfL(l)f L(i) − 1

2 (|�νi |2 + |�νl |2)bli l, i = 1, . . . , N (2.11)

for the N(N + 1)/2 functions bli(t), l � i. The first important feature to be read from
these equations is that diagonal and off-diagonal elements of B decouple. More precisely,
to determine sets of coupled equations we consecutively take the equations coupling indices
(i, l) → (fL(i), fL(l)) → (

f 2
L(i), f 2

L(l)
) → (

f K
L (i), f K

L (l)
) = (i, l): the indices follow the

R-cycles defined above, we get a set of K equations.
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Considering now diagonal elements we get N equations or, rather, (L + 1) sets of K
equations with index pairs to be read from R-cycles:

ḃii + |νi |2(bii − bfL(i)f L(i)) = 0 i = 1, . . . ,K. (2.12)

We anticipate the bii(t) to decrease for t → ∞; this is expected due to the dissipative
structure of the Lindblad generator and, in particular, from the assumption of complete
positivity used in this derivation. So to understand asymptotic configurations, we have
to explore the stationary configurations of the Lindblad equation: (2.11) is a set of linear
differential equations with constant coefficients so that exponential decay will result, the
components remaining at t = ∞ are hence determined by the zero modes.

Let us introduce the following notation:

R-cycles of length K:

R(α) =
[
i
(0)

α1 , . . . , i
(0)

αK

]
α = 1, . . . , L + 1

Pc, cyclic permutation of K elements

Pγ
c = Pc ◦ Pc ◦ · · · ◦ Pc γ times.

We obviously have a zero mode for each R-cycle R(α), a fact which we readily read from
equation (2.12),

zero mode ḃii = 0 i = 1, . . . ,K

and

biα1iα1
= biα2 iα2

= · · · = biαK
iαK

=: b(α)(∞). (2.13)

That is to say that all the diagonal elements of B|t=∞ enumerated by an index set R(α), are
equal and non-vanishing for any non-trivial initial configuration, the characteristic polynomial
of (2.12) thus has a zero mode. To show the non-vanishing of the b(α)(∞), α = 1, . . . , L, we
simply calculate b(α)(∞) in terms of the initial configuration. The important step is to derive
constants of motion for (2.12). Adding appropriately multiplied equations (2.12) we arrive at

K∑
γ=1

ḃ
i
(γ )

α1 i
(γ )

α1
w

i
(γ )

α2
· · · w

i
(γ )

α1
= 0

where [
i
(γ )

α1 , . . . , i
(γ )

αK

]
:= Pγ

c

[
i
(0)

α1 , . . . , i
(0)

αK

]
.

Integrating this relation and equating the result for t = 0 and t = ∞ we get in view of (2.14)

b(a)(∞) =
∑k

γ=1 b
i
(γ )

α1
i
(γ )

α1 (0)w
i
(γ )

α2
. . . wi

γ

αK∑k
γ=1 w

i
(γ )

α2
. . . w

i
(γ )

αK

. (2.14)

This result has a very intriguing interpretation: the asymptotic diagonal elements b(α)(∞)

are simply the statistical average of the initial diagonal elements with a normalized probability
distribution determined by the matrix elements of the Lindblad matrix: wi = |νi |2.

As far as off-diagonal elements are concerned we again look for non-trivial solutions of

V +B V − 1
2 [V +V,B]+ = 0. (2.15)

Iterating any off-diagonal equation along an R-set we find from (2.11)

bei = cei cfL
(e)fL(i) . . . cf K−1

L (e)f K−1
L (i)bei
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with

cei := ν∗
e νi

1
2 (|νi|2) + |νe|2

.

Since

|cei| < 1 if νe �= νi

we conclude that

bei = 0

unless

νf α
L (e) = νf α

L (i) for all α = 0, . . . ,K − 1. (2.16)

Thus to obtain a non-vanishing off-diagonal asymptotic matrix element bei we have to look
up the R-cycle(s) containing e and i and equate all ν following these cycles. Clearly, after a
few steps all νi are equal,

νi = ν̃ i = 1, . . . , N (2.17)

and the Lindblad matrix is a multiple of a ‘square root of unity’,

V = ν
√

I (2.18)

where I is the N × N unit matrix. Thus we have N! roots which are to be classified following
the method described above where we restricted our discussion to the case of maps fL defined
in (2.9). Letting the latter act on the remaining non-cyclic permutations of [1, . . . , N] will
cover all other cases which, however, do not lead to essentially (see below) new results.

After this digression, let us return to the discussion of off-diagonal elements. Taking now
a set of νi obeying (2.17) we obtain non-vanishing off-diagonal contributions to B|t=∞ which
follow from the same averaging procedure as given in (2.16). Writing down the corresponding
general formulae would require either cryptic or, if one attempts to be explicit, clumsy notation.
So we think it might be of use to illustrate the general results in an explicit example.

2.3. Explicit solutions for N = 6

We begin with L = 0 and not all νi equal, i.e. equations (2.17) are not obeyed and our
asymptotic configuration is diagonal or, more precisely, a multiple of the unit matrix,

B|t=∞ = b(0)(∞)I (2.19)

with (see equation (2.15))

b(0)(∞) = b11(0)w2w3w4w5w6 + · · · + b66(0)w1w2w3w4w5

w1w2w3w4w5 + w1w2w3w4w6 + · · · + w2w3w4w5w6
(2.20)

for any initial configuration.
Take L = 1 and hence K = 3. We have two R-cycles

R(1) = [1, 3, 5] R(2) = [2, 4, 6].

The asymptotic configuration is then

B|t=∞ =




b(1)(∞)

b(2)(∞) 0
b(1)(∞)

b(2)(∞)

b(1)(∞)

0 b(2)(∞)




(2.21)
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b(1)(∞) = w1w3b55(0) + w3w5b11(0) + w5w1b33(0)

w1w3 + w3w5 + w5w1 (2.22′)

b(2)(∞) = w2w4b66(0) + w4w6b22(0) + w6w2b44(0)

w2w4 + w4w6 + w6w2

if (2.17) is violated, i.e. the ν1, . . . , ν6 do not obey any of the sets of equations

ν1 = ν3 = ν5 (2.23a)

or

ν2 = ν4 = ν6 (2.23b)

or

ν1 = ν2 ν3 = ν4 ν5 = ν6 (2.23c)

or

ν1 = ν4 ν3 = ν6 ν5 = ν2 (2.23d )

or

ν1 = ν6 ν3 = ν2 ν5 = ν4. (2.23e)

Let us now suppose that (2.23c) holds; equations (2.11) then yield the relevant matrix
elements (all others vanish at infinity)

ḃ12 + w1(b12 − b34) = 0

ḃ34 + w3(b34 − b56) = 0

ḃ56 + w5(b56 − b12) = 0.

Therefore,

b3(∞) := b12(∞) = b34(∞) = b56(∞) w1w3ḃ56 + w3w5ḃ12 + w5w1ḃ34 = 0

and

b3(∞) = w1w3b56(0) + w3w5b12(0) + w5w1b34(0)

w1w3 + w3w5 + w5w1
.

If we finally assume (2.23d ) to hold, we arrive at the case where all νi are equal,

νi = ν i = 1, . . . , 6.

The statistical weights in the averages become all equal, seven independent averages arise
and the asymptotic configuration can be written as

B|t=∞




b1 b3 b4 b5 b∗
4 b6

b2 b∗
6 b7 b∗

5 b∗
7

b1 b3 b4 b5

b2 b∗
6 b7

h.c. b1 b3

b2




where

b1 = 1
3 (b11(0) + b33(0) + b55(0))

b2 = 1
3 (b22(0) + b44(0) + b66(0))

b3 = 1
3 (b12(0) + b34(0) + b56(0))

b4 = 1
3 (b13(0) + b35(0) + b51(0))

and so on.
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2.4. Solutions in general reference frames

In the following, we shall give a preliminary discussion of this problem and study
asymptotic solutions in the vicinity of the cyclically symmetric solutions, explored by unitary
transformations

Obviously, only the L = 0 case survives unitary transformation in an exact sense: we had
in the case L = 0, not all wi equal,

B(t) −−−−−−−→
t→∞ b

(0)

(∞)I. (2.24)

As is equally clear, the symmetries characterized by (L, K) and manifesting themselves
as decouplings in the equations of motion do not persist if unitary transformations U �= I are
performed. Nonetheless, we should expect (and indeed find) traces of these symmetries for
‘small rotations’

U = eiεW W+ = W ε‖W‖  1. (2.25)

It is hard to make any general statements. If we expand in terms of ε we must keep in mind
that the expansion limits the long time integration, in particular the limit t → ∞ becomes
meaningless. Notwithstanding this difficulty, if we take ||V || sufficiently large to obtain a
rapid approach to this limit we find an intermediate region where the asymptotic B is already
sufficiently stable so that an estimate is meaningful: the shift 	Bjk|tlarge of matrix elements
due to small unitary rotation can be estimated as

	Bjk|tlarge = ε2	B (2.26)

where 	B is a level splitting due to an L � 1 symmetry at ε = 0 (for example (2.22′) gives
	B = b(1) − b(2)).

To get some more detailed insight we had to take recourse to numerical experiments. We
need two inputs:

(a) A Hermitian matrix B|t=0 whose entries are complex numbers with random real and
imaginary parts:

−1 � Re B
(0)

ik � 1 and −1 � Im Bik(0) � 1 i, k = 1, . . . , N. (2.27)

(b) A complex matrix V as constructed in (2.8) and (2.7); as input we take random numbers

−1 � Re νi � 1 and −1 � Im νi � 1. (2.28′)

To construct unitary matrices U close to I, controlled by a parameter ε we proceed as follows:
we take column vectors

ũi = ei + εhi i = 1, . . . , N

where ei are the standard unit vectors (e1 = (1, . . . , 0), e2 = (0, 1, 0, . . .) etc) of length N and

hi = (hmi) m, i = 1, . . . , N

with random entries −1 � Re hmi � 1,−1 � Im hmi � 1. A Gram–Schmidt procedure
yields an orthonormal set of linear independent vectors hi, i = 1, . . . , N

ũi −−−−−−−→
Gram–Schmidt

ui

for all ε, and hence a unitary matrix U.
We then perform a sample of computations varying ε,

ε = 10−3, 10−2, 10−1
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and compare with the results of a calculation at ε = 0 where the symmetries discussed hold
exactly. For each member of the sample the random matrices B|t=0 and V are fixed; we
furthermore kept the random vectors hi fixed and varied only ε

Results for N = 4, L = 1:

ε = 0 : the asymptotic configuration is diagonal and
twofold degenerate as predicted by the L = 1
symmetry.

ε = 10−2, ε = 10−3 : the symmetry pattern obtained at ε = 0 remains, a
dependence on the parametrization of U is not
detected (closeness to the symmetry pattern is
essentially controlled by ε).

ε = 10−1 : non-diagonal asymptotic configurations result.
The twofold degeneracy of the diagonal elements
however persists.

We have also calculated the cases N = 6, L = 1, 2 andN = 12, L = 1, 2, 3. The results
are qualitatively the same as in the L = 1 case.

Nonetheless, we should keep in mind that these ‘symmetry regions’ are rather small: if we
throw a dice to get a complex Lindblad matrix V the probability of obtaining the asymptotic
configuration (2.20) and (2.21) (for N = 6) or (2.15) for L = 0 and all N, is very close to 1.
Configurations with non-trivial invariant subspaces corresponding to non-trivial R-cycles will
be improbable since the volume (i.e the probability measure for the result of dice throwing) of
the region in parameter space around these subspaces determined by ε compared to the region
(2.28) is very small and decreases with the dimension of our Hilbert space.

3. An algebraic model

As discussed above, the problem we are confronted with is in a way the problem of constructing
‘square roots’ of positive diagonal matrices V +V . This reminds us of Dirac’s solution of, in
essence, a similar problem: the construction of ‘square roots’ of the d’Alembert operator
(which should be taken in a Euclidean metric because of positivity to emphasize the analogy).
Dirac’s brilliant solution of the problem is intimately connected to the construction of Clifford
algebras which can also play a role in our much more restricted context.

The constituent anticommutation relations

γiγj + γjγi = 2δijI i, j = 1, . . . , r

have irreducible representations constructed as r × r matrices with r = 2m,m = 2, 4, . . . even.
We shall consider the lowest dimensional case r = 4. Explicitly, we take the (Euclidean)
Dirac representation

γi =
(

0 σi

σi 0

)
i = 1, . . . , 3 γ4 =

(
0 iI

−iI 0

)
γ5 = γ1γ2γ3γ4 γ6 = I.

γ7 · · · γ12 are determined as
i

2
(γiγj − γjγi)

and γ13 · · · γ16, finally, as
i

6
εijk�γjγkγ�
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where

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
are Pauli matrices, I denotes 2 × 2 or 4 × 4 unit matrices, the γ1 · · · γ16 are2 linear independent
and span the 16-dimensional Clifford algebra, as a vector space over R they span the space of
4 × 4 Hermitian matrices, as a vector space over C the space of 4 × 4 complex matrices is
obtained.

We write the Lindblad matrix V as

V =
∑

νiγi νi ∈ C (3.1)

and the observables B as

B =
∑

fi(t)γi fi ∈ R. (3.2)

If we take

V =
16∑
i=1

νiγi

i.e. if we take V as the most general complex 4 × 4 matrix, we find from

Ḃ = V +BV − 1
2 [V +V,B]+

(2.1′)
B = H,A, . . .

that only the trivial component f6(t) (γ6 = I) decouples,

ḟ 6(t) = 0.

As a close inspection of the multiplication rules of our representation shows, after all the
representation we use is irreducible: We reproduce our statement on multiples of I being the
only non-trivial asymptotic configuration for general V . We have

B|t=∞ = f6(0)γ6

(the averaging (2.15) and (2.21) is cut short here by the decomposition into the basis {γi}).
In the attempt to alleviate this strict constraint on asymptotic configurations, we look for

subalgebras. The simplest one is spanned by the four diagonal matrices γ5, γ6, γ7, γ12:

diag =
{

Mdiag|Mdiag =
4∑

i=1

ciγKi
ck ∈ C or R

}
K = [5, 6, 7, 12].

Furthermore, there are three less trivial eight-dimensional subalgebras:


(i)

C,R =
{

M(i)|M(i) =
8∑

k=1

ckγK
(i)
k

ck ∈ or R

}
K(1) = [3, 4, 15, 16, 5, 6, 7, 12]

K(2) = [1, 2, 13, 14, 5, 6, 7, 12] K(3) = [8, 9, 10, 11, 5, 6, 7, 12]. (3.3)
2 Explicitly, we use the following enumeration:

γ5 =
(

I 0
0 −I

)
γ6 =

(
I 0
0 I

)
γ 7 =

(σ3 0
0 −σ3

)
γ8 =

(−σ2 0
0 −σ2

)
γ9 =

(σ1 0
0 σ1

)

γ 7 =
(σ3 0

0 σ3

)

γ10 =
(−σ1 0

0 σ1

)
γ11 =

(−σ2 0
0 σ2

)
γ12 =

(−σ3 0
0 σ3

)
γ13 =

( 0 −iσ1

iσ1 0

)

γ14 =
( 0 iσ2

−iσ2 0

)
γ15 =

( 0 −iσ3

iσ3 0

)
γ16 =

( 0 I

−I 0

)
.
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It can now be inferred from the multiplication rules of the algebra that the map

B �−→ V +BV − 1
2 [V +V,B]+

decouples

for V ∈ 
(1)

C
the components f6 and f7

for V ∈ 
(2)

C
the components f6 and f12

for V ∈ �
(3)

C
the components f5 and f6

i.e.

B|t=∞ =




f6(0) + f7(0)

f6(0) − f7(0)

f6(0) − f7(0)

f6(0) + f7(0)




B|t=∞ =




f6(0) − f12(0)

f6(0) + f12(0)

f6(0) + f12(0)

f6(0) − f12(0)




B|t=∞ =




f6(0) + f5(0)

f6(0) + f5(0)

f6(0) − f5(0)

f6(0) − f5(0)


 .

We see that the total degeneracy is reduced to a pair degeneracy (by the way this pair
degeneracy appears in all possible groupings).

The mechanism for this reduction of degeneracy should be expected to be similar to the
case L = 1 discussed above: closer inspection of the representation matrices used here shows
that a simple transformation of the basis {γi, iεK(j)}, j = 1, 2, 3 leads to a decoupling of the
equation of motion into two decoupled sets with one zero mode each.

The important difference from the cases discussed in the previous section however is
that the parameter space used for the construction of the L = 1 Lindblad matrix V can now
be exactly given, C

8. The parameter space corresponding to the construction described in
section 2 was C

4.
The choice of one of the 

(i)

C
as a set of Lindblad matrices is the best one can do to obtain

reduced degeneracy: if we adjoin any of the remaining basis vectors to get a larger reference
space for V we immediately are back to the case of total degeneracy—only f6 decouples. On
the other hand, the case of no degeneracy occurs only if we choose diag—a trivial case.

It should be noted that only diagonal asymptotic (non-trivial) configurations occur in this
model.

4. A classification of Lindblad matrices V and the influence of Hamiltonian motion

Suppose we are given a reference frame in an N-dimensional Hilbert space—a basis determined
by the physical setting of the system we are to describe—and a Lindblad matrix V . In the
first step, we transform to a frame in which V +V is diagonal with positive diagonal elements
wi > 0 (rank (V ) = N); V is then built up by orthonormal column vectors �vi ,

V = (�v1, . . . , �vN). (4.1)
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Now let �e1, . . . , �eN denote the usual unit vectors �e1 = (1, 0, 0, . . .), �e2 = (0, 1, 0, 0 . . .) etc,
and

f : [1, . . .] �−→ [i1, . . . , iN ] (4.2)

a permutation. It is ancient lore that f can be uniquely decomposed into a set of cycles

f = (iα1, . . . , iαk)(iβ1, . . . , iβl) . . . . (4.3)

We now define

Vf = (�eiα1, . . . , �eiβ1, . . . , �eiαk, . . . , �eiβl , . . .) · diag (4.4)

where diag is an N × N diagonal matrix with complex entries (this definition is just another
way of writing (2.8): the �eiαk figures as the αkth column). As we discussed above, to each cycle
corresponds an invariant subspace—the corresponding diagonal elements of the observable
B moving according to the Lindblad equation decouple −, B restricted to this subspace
approaches the identity of this subspace (see (2.15) and (2.22) ff ). Hence the asymptotic
configuration B|t=∞ is invariant under the product of unitary transformations acting in these
subspaces,

Uinv = Ucα ⊕ Ucβ ⊕ · · · . (4.5)

Thus iff V coincides with an element of the set

Vinv = {
V |V = U+

invVf Uinv, all Ucα,Ucβ, diag
}

(4.6)

the asymptotic configuration reads

B|t=∞ = b(α)(∞)Iα ⊕ b(β)(∞)Iβ ⊕ · · · . (4.7)

Two limiting cases are of interest. Consider the case where f is a cyclic permutation (the
L = 0 case of section 2) and (4.3) consists of one factor and Uinv is a unitary transformation
in H. If on the other hand f is the identity we see that Vf is diagonal and Uinv is the direct
product of U(1) transformation; it is diagonal with phase factors as entries. To decide which
of the described categories a given V eventually belongs to we have to probe the elements
of Vinv starting with this last case and ending with the first—a very ‘theoretical’ prospect
indeed. In by far the most cases, this fictional check would end with the identity in H as
the corresponding asymptotic configuration as should be clear from the relative ‘volumes’ of
the elements of Vinv. Let us now include Hamiltonian motion. The observable B obeys the
equations of motion,

˙̃B = Ṽ +B̃Ṽ − 1
2 [Ṽ +Ṽ , B̃]+ (4.8)

where

B̃ = e−iHtB eiHt

and

Ṽ = e−iHtV eiHt .

The case where

[H,V +V ] = 0 (4.9)

is particularly simple: we work in the energy basis in H in which both H and V +V are
diagonal. Equations (2.12) are seen to remain unchanged so that the asymptotic factors are not
influenced by the Hamiltonian. If on the other hand V +V is not diagonal in the energy basis
the asymptotic configurations retain the structure established above. The integrals of motion
((2.14) ff ) however no longer hold and the determination of the asymptotic constants b(α)(∞)

is more complicated.
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5. States

Up to now we have been working exclusively in the Heisenberg picture. Since the motion of
states is of interest in its own right we should add a few remarks on the Schrödinger picture
for Lindblad motion and write down the results for the maps

τ̂ (V ) : �|t=0 �→ �|t=∞ (5.1)

mapping an initial state, the density matrix at t = 0, on the final state at large times. In
discussing τ̂ (V ) we strictly follow the methods described above.

Expectation values in the Heisenberg picture derive from a physically defined state �0

which we take as the density matrix at t = 0, identified with the Schrödinger state at this time.
We fix the latter by prescribing a probability distribution.

The expectation value for the observable B in the state �0 is

〈B〉t = Tr(B(t)�0) = Tr
(
eL

→
B tB(0)�0

)
= Tr

(
B(0)�0 eL

←
B t

)
=: Tr

(
B(0) eL

→
�t �0

)
(5.2)

where LB is read from (1.6)

LB(·) = V + · V − 1
2 [V +V, ·]+ (5.3)

the arrow indicates the direction of action; hence

L�(·) = V · V + − 1
2 [V +V, ·]+ (5.4)

and the Lindblad equation for states

�̇ = −i[H,�] + V �V + − 1
2 [V +V, �] (5.5)

reads, for Lindblad matrices derived from (2.8),

�̇li = vf −1
L (l)v

∗
f −1

L (i)
bf −1

L (l)f −1
L (i) − 1

2 (|vi|2 + |vl|2)bli . (5.6)

Asymptotic solutions are derived along the lines described in section 2.
In the notation leading to (2.15) we obtain

�|t=∞ = (�̃ik) �|t=0 = (�ik(0)) �̃ik = δik�i(∞)

�jαk
(∞) = P

(α)
initial

1

wjαk

1
K∑

l=1

1
wjαl

(5.7)

where

Wα =
K∏

k=1

wjαk

and

P
(α)
initial =

K∑
k=1

�jαkjαk
(0). (5.8)

The R-cycles of length K = N
L+1 are now denoted as

R(α) = [
jα1 . . . jαK

]
α = 1, . . . , L + 1.

Asymptotic configurations turn out diagonal, for arbitrary initial configurations, except the
degeneracies described above.
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Lindblad motion carries information on the initial state in form of the partial traces P
(α)
initial;

it is of interest to note that all the information on the initial state drops out in the L = 0 case
(the generic case defined in the summary), as it does in the Heisenberg picture, so that the
asymptotic expectation value is given by (2.15) (L = 0,K = N) or (2.21) (N = 6, L = 0).
The partial traces have the statistical interpretation of sums of probabilities and give the
statistical weight of the invariant subspace determined by R(α).

Solutions in general frames, discussed in section 2.4, seen from the point of view of
expectation values, now are interpreted in the following manner.

Let VL be a Lindblad matrix as given by (2.8) and

V = {UVLU−1|U ∈ U}
the class of unitary equivalents of VL (U is the unitary group in N2 dimensions). Now, if BU

is a solution of

Ḃu = V +
UBUVU − 1

2

[
V +

UVU ,BU

]
(5.9)

with

VU ∈ V

and initial conditions

BU(0) = UBinU
−1 (5.10)

then

BL(t) = U−1BU(t)U

is a solution of

ḂL = V +
L BLVL − 1

2

[
V +

LVL,BL

]
and

〈BU 〉t = Tr(BU(t)�0)

= Tr(BL(t)U−1�oU) for all U ∈ U. (5.11)

Hence, to determine expectation values of observables moving with a Lindblad matrix
VU ∈ V we simply have to handle the much easier problem of solving the Lindblad equation
for the generating Lindblad matrix VL with an initial configuration Bin (in fact, this problem
is asymptotically solved in (2.15)) and to calculate the expectation value (5.10); �0 is the
Schrödinger state at t = 0 corresponding to the physical process described with an observable
(5.10). In this way we have solved, asymptotically, the Lindblad equation for a large class of
Lindblad matrices. Needless to say, there is an obvious counterpart of this derivation for the
Schrödinger picture.

6. Summary

The problem posed in this paper is to discuss the motion of observables or states generated
by a Lindblad generator. The latter is ‘parametrized’ by a Hamiltonian H and Lindblad
operators Vj . We restrict our discussions to the case of a finite number of levels and thus
to N-dimensional Hilbert spaces and N × N Hermitian Hamiltonian matrices H and general
non-singular N × N complex matrices V ∈ C

N 2
, only one matrix V figures in our ansatz

for the Lindblad generator (which in the case of finite dimensions is not an assumption of
unnatural purport).
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At the centre of our investigation are maps which map an initial configuration of an
observable B into the configuration at large times (t → ∞) predicted by the Lindblad
equation

τ (V ) : B|t=0 −−−−−−−→
Lindblad

B|t=∞.

Our intention is to characterize the dependence of τ on the Lindblad matrices V and ascertain
in particular consequences of symmetries of V for τ (V ). Are there specific structures in
asymptotic configurations produced by symmetries of V which may serve as a key for the
characterization of τ (V )?

In section 4 we described a classification of Lindblad matrices according to characteristics
of asymtoptic configurations. The general feature to note is that observables approach
asymptotically the identity in whatever invariant subspace (characterized by cycles in the
permutation of levels defining a Lindblad process). Exceptions from this rule are determined
by degeneracies in the probability distribution fixing the asymptotic configuration.

Apart from this characterization it is sensible to ask the more qualitative question of how
symmetry patterns behave under small symmetry breaking, i.e. under small unitary rotations,
unitary transformations close to the identity. To this end, we provide numerical experiments
in section 2.2 which support the surmise that symmetry is apparent only in a rather small
neighbourhood of unity.

It seems reasonable to assume as a generally applicable idea that this neighbourhood can
be significantly extended by endowing the linear space of complex N × N matrices considered
up to now with more structure. In a way, the problem we are confronted with when treating
the problem of classifying non-Hermitian Lindblad matrices V is to calculate ‘square roots’
V of positive, Hermitian matrices V +V , a problem which is the heart of the definition of a
Clifford algebra (well known from the Dirac equation invented to describe relativistic spin
1
2 particles) spanned by 4 × 4 complex matrices, the γ -matrices. Two things are now to be
discovered:

(i) As expected, Lindblad dynamics in the full 16-dimensional algebra will lead to multiples
of unity as asymptotic configurations, in general

(ii) The full algebra contains three subalgebras of eight dimensions and one algebra spanned
by diagonal γ , the trivial case. Lindblad dynamics in the eight-dimensional subalgebras
leads to asymptotic configurations with two degenerate doublets (the three subalgebras
yield exactly the three possibilities of arranging two doublets on four positions). Expressed
in the terminology of the general case, this is the N = 4, L = 1 symmetry which now
persists in the whole parameter space C

8. We have thus constructed a model where
a non-trivial symmetry is not restricted to small neighbourhoods of C

4 of symmetry
configurations (as it was for the situation discussed in section 2.4) but rather holds in
all of the parameter space. If we extend the span of any of the three eight-dimensional
subalgebras by one more basis vector γ̂ the asymptotic configuration of the obtained
system collapses to a multiple of unity in the new parameter space

For further evaluation of the physical relevance of these results, we should add the
following more general possibility of establishing Lindblad dynamical systems. We now
consider V as a matrix of matrices and take it as consisting of matrix elements νiIn where
νi ∈ I and In is the n×n unit matrix, N is now an integer multiple of n. The equations of motion
(2.11) or (2.12) are now identical in form if the bei are now considered as n × n submatrices
of the Hamiltonian matrix (non-diagonal in general, of course) or any other observable. The
line of arguments leading to the asymptotic configuration is still the same and we derive the
following asymptotic forms for, say, the Hamiltonian:
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L = 0: the asymptotic Hamiltonian (N × N matrix) is the direct sum of N/n identical
Hamiltonians (n × n matrices) obtained from the statistical average (2.15) or,
for N = 6, (2.21);

L = 1: the asymptotic Hamiltonian is the direct sum of N/2n identical pairs of
Hamiltonians (N/2n is assumed integer) obtained from (2.15) as statistical
averages of Hamiltonians which are now n × n submatrices arranged along
the diagonal at t = 0;

and so on.
Physically speaking, for an L such that N/(L + 1) is an integer multiple of n ∈ N,

the system defined at t = 0 disintegrates, for t → ∞, into (L + 1) independent, i.e. non-
interacting quantum systems: the asymptotic configuration of the Hamiltonian defined at t = 0
is represented as the direct sum of tne n × n sub-Hamiltonians obtained from averages (2.15).

An interesting possibility for model building is to include the Lindblad matrix in the set
of dynamical variables: taking Ṽ as one of the quantities B̃ we find

˙̃V = 1
2 [Ṽ +, Ṽ ]Ṽ

a non-linear equation for Ṽ . Determining the asymptotic solutions of these equations, we
find that the asymptotic degeneracy structure observed for B or B̃ is now enforced for V +V .
Degeneracies in V +V and hence in V then entail the kind of off-diagonal structures defined
in equation (2.17 ff ) or in the N = 6 example discussed in section 2.2.

Let us finally turn to the question of what happens if more than one operator Vi is
required to parametrize the equation of motion (1.6). The prevalent situation (in the sense of
discussion) is that in which the asymptotic configuration is proportional to the unit operator
I: the appearance of more than one such operator will simple modify the statistical average
(2.15) or (2.21). An interesting more general case conceivably occurs if Vi with nested
symmetries can be applied in a specific physical situation. An especially simple case arises
if the dynamical variables are embedded in a group manifold or an algebraic structure as in
the Clifford algebra example discussed above where the decoupling structure of asymptotic
configurations is a matter of symmetry extended over all the available parameter space
(cf (3.3) ff ). In our example, this means that an arbitrary collection of Vj ∈ T

(i)

R,C yields
a direct sum of asymptotic configurations (3.3) ff. This result can be readily extended to
higher dimensions d = 24m, m ∈ N.
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